
 
Linguistic Theories in Efficient Multimodal Reference 

Resolution: An Empirical Investigation 
 

Joyce Y. Chai       Zahar Prasov     Joseph Blaim     Rong Jin
Department of Computer Science and Engineering 

Michigan State University 
East Lansing, MI 48824 

{jchai, prasovza, blaimjos, rongjin} @cse.msu.edu

 
ABSTRACT 
Multimodal conversational interfaces provide a natural means 
for users to communicate with computer systems through 
multiple modalities such as speech, gesture, and gaze. To build 
effective multimodal interfaces, understanding user multimodal 
inputs is important. Previous linguistic and cognitive studies 
indicate that user language behavior does not occur randomly, 
but rather follows certain linguistic and cognitive principles. 
Therefore, this paper investigates the use of linguistic theories 
in multimodal interpretation. In particular, we present a greedy 
algorithm that incorporates Conversation Implicature and 
Givenness Hierarchy for efficient multimodal reference 
resolution. Empirical studies indicate that this algorithm 
significantly reduces the complexity in multimodal reference 
resolution compared to a previous graph-matching approach. 
One major advantage of this greedy algorithm is that the prior 
linguistic and cognitive knowledge can be used to guide the 
search and significantly prune the search space. Because of its 
simplicity and generality, this approach has the potential to 
improve the robustness of interpretation and provide a more 
practical solution to multimodal input interpretation.   

Categories & Subject Descriptors: H.5.2 (User 
Interfaces): Theory and method, Natural language 
General Terms: Algorithms, Design, Experimentation 

Keywords: Multimodal input interpretation, reference 
resolution 

1. INTRODUCTION 
Multimodal user interfaces enable users to interact with 
computers naturally and efficiently through multiple modalities 
such as speech, gesture, and gaze [15, 17]. One important 
aspect of multimodal conversational interfaces is the capability 
to identify entities that users refer to in their multimodal inputs, 
in other words, multimodal reference resolution. In a 

multimodal conversation, the way users communicate with a 
system depends on the available interaction channels and the 
situated context (e.g., conversation focus, visual feedback). 
These dependencies form a rich set of constraints from various 
perspectives such as temporal alignments between different 
modalities, coherence of conversation, and domain semantics.  
To obtain the most probable interpretation based on these 
constraints, an optimization approach using probabilistic graph 
matching was developed [1, 3]. This approach has its 
theoretical merit since it aims for a global optimization when 
matching referring expressions to potential referents based on a 
set of constraints. However, as most optimization approaches, 
the graph-matching algorithm has a non-polynomial (NP) 
nature. It could become intractable once the number of referring 
expressions and the number of potential referents (e.g., objects 
on the screen) are increased. Thus a more practical solution is 
desired. 
Previous linguistic and cognitive studies indicate that user 
referring behavior does not occur randomly, but rather follows 
certain linguistic and cognitive principles. Our hypothesis is 
that prior knowledge from these studies can be used to guide the 
matching process and reduce the complexity in constraint 
satisfaction.  With this in mind, the focus of this paper is to 
empirically investigate the use of linguistic theories in efficient 
multimodal reference resolution. Specifically, we investigate 
two linguistic theories: Conversation Implicature and 
Givenness Hierarchy. We present a greedy algorithm that 
utilizes these two theories. Given m referring expressions and n 
potential referents from various sources (e.g., gesture, 
conversation context, and visual display), this algorithm can 
find a solution in O(mn). Empirical studies indicate that this 
algorithm achieves comparable performance to the 
graph-matching approach. One major advantage of this greedy 
algorithm is that the prior linguistic and cognitive knowledge 
can be used to guide the search and significantly prune the 
search space. Because of its simplicity and generality, this 
approach has the potential to improve the robustness of 
interpretation and provide a more practical solution to 
multimodal reference resolution. 
In the following sections, we first introduce two linguistic 
theories and then describe how they can be used to design 
efficient algorithms for multimodal reference resolution.   
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2. RELATED WORK  
Considerable work has been done on studying multimodal 
referring behavior [5, 16] and mechanisms to resolve 
multimodal referring expressions [3, 4, 6, 10, 12, 13, 14, 19, 20]. 
In multimodal reference resolution, two issues are important: (1) 
combining information from various sources to form an overall 
interpretation given a set of constraints, and (2) obtaining the 
best interpretation among all the possible alternatives given a 
set of constraints.  
Much of the earlier work has been focused on the first issue, for 
example, using the centering framework [20] and contextual 
factors [10]. One major mechanism is multimodal fusion, for 
example, through unification-based approaches [12] or finite 
state approaches [13]. The unification-based approach 
identifies referents to referring expressions by unifying feature 
structures generated from speech utterances and from gestures 
based on a multimodal grammar [11, 12].  The grammar rules 
are predefined based on empirical studies of multimodal 
interaction [16]. For example, one rule indicates that speech and 
gesture can be combined only when the speech either overlaps 
with gesture or follows the gesture within a certain time frame. 
If a specific user referring behavior does not exactly match any 
existing integration rules (e.g., temporal relations), the 
unification fails and therefore references are not resolved. In the 
finite state approach [13], a multimodal context-free grammar 
is defined to transform the syntax of the multimodal inputs into 
their semantic meanings. The domain specific semantics are 
directly encoded in the grammar. Based on these grammars, 
multi-tape finite state automata can be constructed. These 
automata are used for identifying semantics of combined 
inputs. 
To address the second issue, an optimization approach was 
developed that uses a graph-matching algorithm for multimodal 
reference resolution [1, 3]. In this approach, information 
gathered from multiple input modalities and the conversation 
context is represented as attributed relational graphs. 
Specifically, one graph represents the semantic and temporal 
information for referring expressions and their semantic and 
temporal relations; and the other graph represents all potential 
referents and their semantic and temporal relations. Given the 
semantic and temporal constraints modeled in these graphs, the 
multimodal reference resolution problem becomes a 
probabilistic graph-matching problem that identifies the most 
compatible match between two graphs. Theoretically, this 
approach provides a solution that maximizes the overall 
satisfaction of semantic, temporal, and contextual constraints. 
However, like many other optimization approaches, this 
algorithm is non-polynomial (NP). It relies on an expensive 
matching process, which attempts every possible assignment, in 
order to converge on an optimal interpretation based on those 
constraints. The question arises whether any information can be 
used to guide this matching process and reduce the complexity. 

Therefore, we investigate linguistic theories for a potential 
solution.  

3. LINGUISTIC THEORIES 
To investigate the use of linguistic and cognitive knowledge in 
efficient multimodal reference resolution, we specifically focus 
on two theories: Conversation Implicature and Givenness 
Hierarchy.  

3.1 Conversation Implicature 
Grice’s Conversation Implicature Theory indicates that the 
interpretation and inference of an utterance during 
communication is guided by a set of four maxims [7]. Among 
these four maxims, the Maxim of Quantity and the Maxim of 
Manner are particularly useful for our purpose.  
The Maxim of Quantity has two components: (1) make your 
contribution as informative as is required (for the current 
purposes of the exchange), and (2) do not make your 
contribution more informative than is required. In the context of 
multimodal conversation, this maxim indicates that users 
generally will not make any unnecessary gestures or speech.  
This is especially true for pen-based gestures since they usually 
take a special effort from a user. Therefore, when a pen-based 
gesture is intentionally delivered by a user, the information 
conveyed is often a crucial component used in interpretation.  
Grice’s Maxim of Manner has four components: (1) avoid 
obscurity of expression, (2) avoid ambiguity, (3) be brief, and 
(4) be orderly. This maxim indicates that users will not 
intentionally make ambiguous references. They will use 
expressions (either speech or gesture) they believe can uniquely 
describe the object of interest so that listeners (in this case a 
computer system) can understand. The expressions they choose 
depend on the information in their mental models about the 
current state of the conversation. However, the information in a 
user’s mental model might be different from the information the 
system possesses. When such an information gap happens, 
different ambiguities could occur from the system point of view. 
In fact, most ambiguities are not intentionally caused by the 
human speakers, but rather by the system’s incapability of 
choosing among alternatives given incomplete knowledge 
representation, limited capability of contextual inference, and 
other factors (e.g., interface design issues). Therefore, the 
system should not anticipate deliberate ambiguities from users 
(e.g., a user only utters “a house” to refer to a particular house 
on the screen), but rather should focus on dealing with the types 
of ambiguities caused by the system’s limitations (e.g., gesture 
ambiguity due to the interface design or speech ambiguity due 
to incorrect recognition).  

3.2 Givenness Hierarchy 
The Givenness Hierarchy proposed by Gundel et al. explains 

Status:                   In focus    >    activated        >      familiar     >     uniquely  identifiable >      referential           >       identifiable 
Expression form:       (it)        (that, this, this N)        (that N)                (the N)                       (indefinite this N)             (a N) 

 
Figure 1: Givenness Hierarchy 
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how different determiners and pronominal forms signal 
different information about memory and attention state (i.e., 
cognitive status) [9].  As in Figure 1, there are six cognitive 
statuses in the hierarchy. For example, Focus indicates the 
highest attentional state that is likely to continue to be the 
topic. Activated indicates entities in short term memory.    Each 
of these statuses is associated with some forms of referring 
expressions.  In this hierarchy, each cognitive status implies the 
statuses to its right. For example, “in focus” implies “activated”, 
“familiar”, etc.  The use of a particular expression form not only 
signals that the associated cognitive status is met, but also 
signals that all lower statuses have been met. In other words, a 
given form that is used to describe a lower status can also be 
used to refer to a higher status, but not vice versa. Cognitive 
statuses are necessary conditions for appropriate use of 
different forms of referring expressions. Gundel et al. found 
that different referring expressions almost exclusively correlate 
with the six statuses in this hierarchy.  
A previous investigation on the Givenness Hierarchy in 
multimodal interaction was reported in [14].  Based on data 
collected from Wizard of Oz experiments, this investigation 
suggests that users tend to tailor their expressions to what they 
perceive to be the system’s beliefs concerning the cognitive 
status of referents from their prominence (e.g., highlight) on the 
display. The tailored referring expressions can then be resolved 
with a high accuracy based on the following decision list:  
1. If an object is gestured to, choose that object. 
2. Otherwise, if the currently selected object meets all semantic 

type constraints imposed by the referring expression, choose 
that object. 

3. Otherwise, if there is a visible object that is semantically 
compatible, then choose that object. 

4. Otherwise, a full NP (such as a proper name) is used to 
uniquely identify the referent.  

From our studies [2], We found this decision list has the 
following limitations:   

• Depending on the interface design, ambiguities (from a 
system’s perspective) could occur. For example, given an 
interface where one object (e.g., house) can be sometimes 
created on top of another object (e.g., town), a pointing 
gesture could result in multiple potential object references. 
Furthermore, given an interface with crowded objects, a 
finger point could also result in multiple potential references. 
The decision list is not able to handle these “ambiguous 
cases”.  

• User inputs are not always simple (consisting of no more 
than one referring expression and one gesture as indicated in 
the decision list). In fact, in our study [2], we found that 
23% user inputs are complex inputs (consisting of multiple 
referring expressions and/or multiple gestures). The 
referents to these referring expressions could come from 
different sources, such as gesture inputs and conversation 
context. The temporal alignment between speech and 
gesture is also important in determining the correct referent 
for a given expression. The decision list is not able to handle 
these types of complex inputs.  

Nevertheless, the findings from [14] have inspired our work 
described in this paper. In particular, we would like to extend 

the previous work and investigate whether Conversation 
Implicature and Givenness Hierarchy can be used to resolve a 
variety of references from simple to complex, and from precise 
to ambiguous. Furthermore, the decision list in [14] is proposed 
based on data analysis and has not been implemented or 
evaluated in a real-time system. Therefore, one of our goals is to 
design and implement an efficient algorithm by incorporating 
these linguistic theories and empirically compare its 
performance with the optimization approach described in [1].   

4. A GREEDY ALGORITHM   
A greedy algorithm always makes the choice that looks best at 
the moment of processing. That is, it makes a locally optimal 
choice in the hope that this choice will lead to a globally 
optimal solution. Simple and efficient greedy algorithms can be 
used to approximate many optimization problems. Here we 
explore the use of Conversation Implicature and Givenness 
Hierarchy in designing an efficient greedy algorithm. In 
particular, we utilize the concepts from the two linguistic 
theories in the following way:  
(1) Corresponding to the Givenness Hierarchy, the following 

hierarchy holds for potential referents: Focus > Visible. 
This hierarchy indicates that objects in the focus have 
higher status in terms of attention states than objects in the 
visual display. Here Focus corresponds to the cognitive 
statuses “in focus” and “activated” in the Givenness 
Hierarchy, and Visible corresponds to the statuses 
“familiar” and “uniquely identifiable”. 

(2) Based on the Conversation Implicature, since a pen-based 
gesture takes a special effort to deliver, it must convey 
certain information. In fact, objects indicated by a gesture 
should have the highest attentional state since they are 
intentionally singled out by a user.   

Therefore, by combining (1) and (2), we derive a modified 
hierarchy Gesture > Focus > Visible > Others. Here Others 
corresponds to indefinite cases. This hierarchy coincides with 
the processing order of the decision list in [14]. This modified 
hierarchy will guide the greedy algorithm in its search for 
solutions.  Next, we describe in detail the algorithm and related 
representations and functions.  

4.1 Representation 
At each turn 1  (e.g., after receiving a user input) of the 
conversation, we use three vectors to represent the first three 
statuses in our modified hierarchy: objects selected by a gesture, 
objects in the focus, and objects visible on the display as 
follows:  

• Gesture vector ( gv ) captures objects selected by a series of 
gestures. Each element gi is an object selected by a gesture. 
For elements gi and gj where i < j, the gesture that selects 
objects gi should either precede (temporally) or the same as 
the gesture that selects gj.   

                                                           
1 Currently, user inactivity (i.e., 2 seconds with no input from either 
speech or gesture) is used as the boundary to decide an interaction 
turn.  

 

45



• Focus vector ( f
v

) captures objects that are in the focus but 
are not selected by any gesture. Each element represents an 
object that is the focus of attention from the previous turn 
of the conversation. There is no temporal precedence 
relation between these elements. We consider all the 
corresponding objects are simultaneously accessible to the 
current turn of the conversation.  

• Display vector ( d
v

) captures objects that are visible on the 
display but are neither selected by any gesture (e.g. gv ) nor 

in the focus ( f
v

). There is also no temporal precedence 
relation between these elements. All elements are 
simultaneously accessible.  

Based on these representations, every object on the display 
belongs to one and only one vector. Each object consists of the 
following information:  

• Semantic type of the object. For example, whether the 
object is a House or a Town. 

• The attributes of the object. This is a domain dependent 
feature. A set of attributes is associated with each semantic 
type. For example, a house object has Price, Size, Year of 
Built, etc. as its attributes. Furthermore, each object has 
visual properties that reflect the appearance of the object 
on the display such as Color of an object icon.  

• The identifier of the object. Each object has a unique name. 

• The selection probability. It refers to the probability that a 
given object is selected.  Depending on the interface design, 
a gesture could result in a list of potential referents. We use 
this selection probability to indicate the likelihood of an 
object selected by a gesture. The calculation of the 
selection probability is described in [3]. For objects from 
the focus vector and the display vector, the selection 
probabilities are set to 1/N where N is the total number of 
objects in the respective vector.  

• Temporal information. The relative temporal ordering 
information for the corresponding gesture. Instead of 
applying time stamps as in [3], here we only use the index 
of gestures according to the order of their occurrences. If 
an object is selected by the first gesture, then its temporal 
information would be “1”.  

In addition to vectors that capture potential referents, at each 
turn, a vector that represents referring expressions from a 
speech utterance ( rv ) is also maintained. Each element (i.e., a 
referring expression) has the following information:  
• The identifier of the potential referent indicated by the re-

ferring expression. For example, the identifier of the poten-
tial referent to the expression “house number eight” is a 
house object with an identifier Eight.  

• The semantic type of the potential referents indicated by the 
expression. For example, the semantic type of the referring 
expression “this house” is House.  

• The number of potential referents as indicated by the refer-
ring expression or the utterance context. For example, a 
singular noun phrase refers to one object. A phrase like 

“three houses” provides the exact number of referents (i.e., 
3). 

• Type dependent features. Any features, such as Color and 
Price associated with potential referents, are extracted from 
the referring expression.  

• The temporal ordering information indicating the order of 
referring expressions as they are uttered.  Again, instead of 
the specific time stamp as in [3], here we only use the 
temporal ordering information. If an utterance consists of N 
consecutive referring expressions, then the temporal ordering 
information for each of them would be 1, 2, and up to N.  

• The syntactic categories of the referring expressions. 
Currently, for each referring expression, we assign it to one 
of six syntactic categories (e.g., demonstrative and pronoun). 
Details are explained later.  

These four vectors are updated after each user turn in the 
conversation based on the current user input and the system 
state (e.g., what is shown on the screen and what was identified 
as focus from the previous turn of the conversation).  

4.2 Algorithm 
The pseudo code for the algorithm is shown in Figure 2. For 
each multimodal input at a particular turn in the conversation, 
this algorithm takes the inputs of a vector ( rv ) of referring 
expressions with size k, a gesture vector ( gv ) of size m, a focus 

vector of ( f
v

) of size n, and a display vector ( d
v

) of size l. It 
first creates three matrices to capture the scores of matching 
each referring expression from rv to each object in the other 
three vectors. Calculation of the matching score is described 
later.  
Based on the matching scores in the three matrices, the 
algorithm applies a greedy search that is guided by our 
modified hierarchy as described earlier. Since Gesture has the 
highest status, the algorithm first searches the Gesture Matrix (G) 
that keeps track of matching scores between all referring 
expression and all objects from gestures. It identifies the 
highest (or multiple highest) matching scores and assigns all 
possible objects from gestures to the expressions 
(GreedySortingGesture).  
If more referring expressions are left to be resolved after 
gestures are processed, the algorithm looks at objects from the 
Focus Matrix (F) since Focus is the next highest cognitive status 
(GreedySortingFocus). If there are still more expressions to be 
resolved, then the algorithm looks at objects from the Display 
Matrix (D) (GreedySortingDisplay). Currently, our algorithm 
focuses on these three statuses. Certainly, if there are still more 
expressions to be resolved after all these steps, the algorithm 
can consult with proper name resolution. Once all the referring 
expressions are resolved, the system will output the results. For 
the next multimodal input, the system will generate four new 
vectors and then apply the greedy algorithm again.  
Note that in GreedySortingGesture, we use index-max to keep track 
of the column index that corresponds to the largest matching 
value. As the algorithm incrementally processes each row in the 
matrix, this index-max should incrementally increases. This is 
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because the referring expressions and the gesture should be 
aligned according to their order of occurrences. Since objects in 
the Focus Matrix and the Display Matrix do not have temporal 
precedence relations, GreedySortingFocus and GreedySortingDisplay 
do not use this constraint. 

This greedy algorithm also applies the dynamic programming 
principle. Each object (no matter whether it is introduced to the 
discourse from gesture, previous conversation, or simply the 
graphic display) first finds its best match to the referring 
expressions. Such a match is recorded through “*” for each 
object. Then at the global level, each referring expression will 
find its best matches based on the order of our modified 
hierarchy. The reason we call this algorithm “greedy algorithm” 
is that it always finds the best assignment for a referring 
expression given a cognitive status in the hierarchy. In other 
words, this algorithm always makes the best choice for each 
referring expression one at a time according to the order of their 
occurrence in the utterance. One can imagine that, a mistaken 
assignment made to an expression can affect the assignment of 
the following expressions.  Therefore, the greedy algorithm 
may not lead to a globally optimal solution. Nevertheless, the 
general user behavior following the guiding principles makes 
this greedy algorithm useful.  
One major advantage of this greedy algorithm is that the use of 
the modified hierarchy significantly prunes the search space 
compared to the graph-matching approach. Given m referring 
expressions and n potential referents from various sources (e.g., 
gesture, conversation context, and visual display), this 
algorithm can find a solution in O(mn). Furthermore, this 
algorithm goes beyond simple and precise inputs as illustrated 
by the decision list in [14].  The scoring mechanism (described 
later) and the greedy sorting process accommodate both 
complex and ambiguous user inputs.   

4.3 Matching Function 
An important component of the algorithm is the matching score 
between an object (o) and a referring expression (e). We use the 
following formula to calculate such a score: 

∑
∈

=
},,{

),(*)]|(*)|([),(
DFGS

eoityCompatibileSPSoPeoMatch

In this formula, S represents the possible associated status of an 
object o. It could have three potential values: G (representing 
Gesture), F (Focus), and D (Display).  
This function is determined by three components: 

• The first, P(o|S), is the object selectivity component that 
measures the probability of an object to be the referent given 
a status (S) of that object (i.e., gesture, focus, or visual 
display).  

• The second, P(S|e), is the likelihood of status component that 
measures the likelihood of the status of the potential referent 
given a particular type of referring expression.  

• The third, Compatibility(o, e), is the compatibility 
component that measures the semantic and temporal 
compatibility between an object and a referring expression.   

Next we explain these three components in detail.  

4.3.1 Object Selectivity 
Given an object selected by a gesture (i.e., with a status Gesture), 
we currently use the approach described in [3] to calculate     

GreedyMultimodalReferenceResolution ( gv , f
v

, d
v

, rv) 

    InitializeMatchMatrix( gv , f
v

, d
v

, rv) 
    If G is not empty  // there are one or more gestures 
    Then {GreedySortingGesture 
               If (all referring expressions in rv  are resolved) 
               Then exit} 
    If F is not empty  
    Then  {GreedySortingFocus  
                If (all referring expressions in rv  are resolved) 
                Then exit} 
    GreedySortingDisplay 
} 
 

InitializeMatchMatrix ( gv , f
v

, d
v

, rv){ 
  for (i = 1..m; j = 1..k)   G[i][j] = Match(gi, rj) 
  for (i = 1..n; j = 1..k)    F[i][j] = Match(fi, rj) 
  for (i = 1..l; j = 1..k)     D[i][j] = Match(di, rj) 
} 
 
GreedySortingGesture { 

 index_max = 1; //index to the column 
 for (i = 1..m) { 
   find j ≥ index_max, where G[i][j] is the largest 

 among the elements in row i.  
        add a mark “*” to the cell G[i][j]; 
        index_max = j; 
  } //complete finding the best match from a view of each object 
  AssignReferentsFromMatrix (G); 
} 
 
GreedySortingFocus{ 
    for (j = 1..k)  
       if (rj is resolved) 
       then Cross out column j in F  //only keep ones not resolved  
    for ( i = 1..n){ 
       find j where F[i][j] is the largest among the elements in row i.  
        mark “*” to the cell F[i][j]; } 
    AssignReferentsFromMatrix (F); 
} 
 
GreedySortingDisplay{ 
    for (j = 1..k)  
        if (rj is resolved)  
        then Cross out column j in D; 
    for ( i = 1..l){ 
        find j where D[i][j] is the largest among the elements in row i.  
        mark “*” to D[i][j]; } 
    AssignReferentsFromMatrix (D); 
} 
 
AssignReferentsFromMatrix (Matrix X){ 
for (i = 1..k) // i.e., for each expression ri  in column i 
   if (ri indicates a specific number N and more than N elements in 
        ith column of X with “*”) 
   then assign N largest elements  with “*”  to ri as referents.   
   else assign all elements with “*” to ri as referents 
} 
 
Figure 2: Pseudo code of the greedy algorithm 
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P(o | S = Gesture).  This measurement accounts for all the 
objects potentially selected by a gesture.   
Given an object from the focus (i.e., not selected by any 
gesture), P(o | S= Focus) = 1/N, where N is the total number of 
objects that are in the focus vector. If an object is neither 
selected by a gesture, nor in the focus, but visible on the screen, 
then  P(o | S= Display) = 1/M, where M is the total number of 
objects that are in the display vector. Note that each object 
to-be-considered is associated with only one of the three 
statuses. In other words, for a given object o, only one of 
P(o|S=Gesture), P(o|S=Focus), and P(o|S=Visible) is non-zero. 
Therefore, in terms of computation, the summation across 
different statuses for a given object is not actually applied.  

4.3.2 Likelihood of Status  
We use the data reported in [14] to derive the likelihood of the 
status of potential referents given a particular type of referring 
expression P(S|e). We categorize referring expressions into the 
following six categories as in [14]. 
(1) Empty: no referring expression is used in the utterance.  
(2) Pronouns: such as “it”, “they”, and “them” 
(3) Locative adverbs: such as “here” and “there” 
(4) Demonstratives: such as “this” “that”, “these”, and “those” 
(5) Definite Noun Phrases: noun phrases with the definite 

article “the” 
(6) Full noun phrases: other types such as proper nouns.  
Table 1 shows the estimated P(S|e). Note that, in the original 
data provided in [14], there is zero count for a certain 
combination of a referring type and a referent status. These zero 
counts result in zero probability in the table. We did not use any 
smoothing techniques to re-distribute the probability mass. 
Furthermore, there is no probability mass assigned to the status 
“Others”. Basically, this probability table is completely based 
on the data reported in [14].  

4.3.3 Compatibility Measurement 
The Compatibility(o, e) measures the compatibility between  an 
object o and a referring expression e. Similar to the 
compatibility measurement in [1], it is defined by a 
multiplication of many factors as follows: 
Compatibility (o, e) =  
    Id(o, e) *Sem(o, e) *Πk Attrk(o, e)*Temp(o, e) 
In this equation: 

Id(o,e) captures the compatibility between  the identifier (or 
name) for o and the identifier (or name) specified in e. It 
indicates that the identifier of the potential referent, as 
expressed in a referring expression, should match the identifier 
of the true referent. This is particularly useful for resolving 
proper nouns. For example, if the referring expression is house 
number eight, then the correct referent should have the identifier 
number eight. Id(o, e) = 0 if the identities of o and e are different. 
Id(o, e) = 1 if the identities of o and e are either the same or 
one/both of them unknown. 
Sem (o, e) captures the semantic type compatibility between o 
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Table 1.  Likelihood of status of referents given a type of 
expression 

FullDefiniteDemonstrativesLocativePronounEmptyP(S|E) FullDefiniteDemonstrativesLocativePronounEmptyP(S|E)
nd e.  It indicates that the semantic type of a potential referent 
s expressed in the referring expression should match the 
emantic type of the correct referent. Sem (o, e) = 0 if the 
emantic types of o and e are different. Sem (o, e) = 1 if they are 
e same or unknown.  
ttrk(o, e) captures the domain specific constraint concerning a 
articular semantic feature (indicated by the subscript k). This 
onstraint indicates that the expected features of a potential 
eferent as expressed in a referring expression should be 
ompatible with features associated with the true referent. For 
xample, in the referring expression the Victorian house, the style 
eature is Victorian.  Therefore, an object can only be a possible 
eferent if the style of that object is Victorian.  Thus, we define 
e following: Ak(o, e) = 0 if both o and e have the feature k and 
e values of the feature k are not equal. Otherwise, Ak (o, e) =1.  
emp(o, e) captures the temporal compatibility between o and e.  
ere we only consider the temporal ordering between speech 

nd gesture.  Specifically, the temporal compatibility is defined 
s follows: 
        ( ) ( ) )exp(),( eOrderIndexoOrderIndexeoTemp −−=  

he order when the speech and the accompanied gestures occur 
 important in deciding which gesture should be aligned with 
hich referring expressions. The order in which the 

ccompanied gestures are introduced into the discourse should 
e consistent with the order in which the corresponding 
eferring expressions are uttered. For example, suppose a user 
put consists of three gestures g1, g2, g3 and two referring 

xpressions, s1, s2. It will not be possible for g3 to align with s1 
nd g2 to align with s2. Note that, if the status of an object is 
ither Focus or Visible, then Temp(o, e) = 1.  
his definition of temporal compatibility is different from the 
aussian function used in [1] that takes into consideration of 

eal time stamps. From our empirical investigation on natural 
ser behavior data, the new definition performs better than the 
revious Gaussian function when incorporated with the greedy 
lgorithm.   

.4 An Example 
igure 3 shows an example of a complex input that involves 
ultiple referring expressions and multiple gestures. Because 
e interface displays house icons on top of town icons, a point 

111111Sum

0.160.670.670.430.150.44Gesture

0.470.070.330.570.850.56Focus

0.370.260000Visible

111111Sum

0.160.670.670.430.150.44Gesture

0.470.070.330.570.850.56Focus

0.370.260000Visible

Gesture input: ……...……… ..♦….….♦…...…♦……

Time

(House 3
Town 1)

(House 9
Town 2)

(House 1
Town 2)

Speech input: Compare  it   with   these  houses.
 

Figure 3: An example of complex input 



(or circle) could result in both a house and a town objects. In 
this example, the first gesture results in both House 3 and Town 1.  
The second gesture results in House 9 and Town 2, and the third 
results in House 1 and Town 2. Suppose before this input takes 
place, House 8 is highlighted on the screen from the previous turn 
of conversation (i.e., House 8 is in the focus). Furthermore, there 
are eight other objects visible on the screen.  
To resolve referents to the expressions “it” and “these houses”, 
the greedy algorithm takes the following steps:  

1. The four input vectors, gv , f
v

, d
v

, rv  are created with 
lengths 6, 1, 8, 2, respectively.  

2. A Gesture Matrix G62, Focus Matrix F12, and Display Matrix D82 
are created. 

3. These three matrixes are then initialized using the 
matching function described above.  Table 2(a) shows the 
resulting Gesture Matrix. The probability values of P(S|e) 
come from Table 1. The difference in the compatibility 
values for the house objects in the Gesture Matrix is mainly 
due to the temporal ordering compatibilities.  

4. Next the GreedySortingGesture is executed. For each row in 
Gesture Matrix, the algorithm finds the largest legitimate 

value and mark the corresponding cell with *. Note that the 
corresponding cell for the row i+1 has to be either on the 
same column or the column to the right of the 
corresponding cell in row i. These values are shown in bold 
in Table 2(a). Next starting from each column, the 
corresponding referring expression checks whether any 
“*” exists in its column. If so, those objects with “*” are 
assigned to the referring expressions based on the number 
constraints. In this case, since no specific number is given 
in the referring expression “these houses”, then all three 
marked objects are assigned to “these houses”.  

5. After “these houses”, there is still “it” left to be resolved.  
Now the algorithm continuous to execute 
GreedySortingFocus. The Focus Matrix prior to executing the 
GreedySortingFocus is shown in Table 2(b). Note that since 
“these houses” is no longer considered, its corresponding 
column is deleted from the Focus Matrix. Similar to the 
previous step, the largest non-zero match value is marked 
(shown in bold in Table 2b) and assigned to the remaining 
referring expression “it”. 

6. The resulting Display Matrix is not shown because it is not 
needed to resolve the referring expressions in this 
utterance. 

5. EVALUATION 
To evaluate this approach, we use the 219 multimodal inputs 
collected previously 2 [2]. Table 3 shows the performance 
comparison between the greedy algorithm and the 
graph-matching algorithm. Overall, as shown in Table 3(a), the 
greedy algorithm performs comparably to slightly better than 
the graph-matching approach. Out of 219 inputs, the 
graph-matching algorithm achieves 58.9% accuracy and the 
greedy-algorithm achieves 61.2% accuracy. The major error 
sources for both algorithms come from poor speech recognition 
and language understanding, which were accounted for 55% 
and 20% of total errors respectively. Disfluencies are another 
problem. When a disfluency such as gesture repetition or repair 
occurs, the algorithm has no knowledge of such an exception 
and will mistakenly assign one or more objects from every 
gesture input to a referring expression.  Thus disfluency 
detection will be helpful.  
Table 3(b) and 3(c) show the detailed comparison along two 
different dimensions: the type of inputs and the performance of 
speech recognition. In both cases, the greedy algorithm 
performs comparably to the graph-matching approach. Table 
3(d) further analyzes the difference in processing complex 
inputs. Out of 33 complex inputs, only 18 of them had 
expressions correctly recognized. Among those 18 correctly 
recognized complex inputs, there are three cases where the 
greedy algorithm works better than the graph-matching 
algorithm. The main reason is that parameters used in the 
graph-matching algorithm are very sensitive to the training 
process and sometimes parameters learned may not be 
generalized to find the best matches for the new inputs (as in the 
three cases). Since the greedy algorithm is guided by the 
                                                           
2 The system used to collect the experimental data was developed 
with colleagues at IBM T. J. Watson Research Center when the first 
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Table 3: Performance comparison 
Graph  

Matching 
Greedy 

t Type Total 
Num 

Num % Num % 

l Inputs 219 129 58.9 134 61.2 

ple Inputs 186 117 62.9 119 64.0 

plex Inputs 33 12 36.4 15 45.5 

rectly  
ognized  127 103 81.1 106 83.5 

rrectly    
ognized 92 26 28.3 28 30.4 

plex &  
rectly Recog. 18 11 61.1 14 77.8 

plex &  
r.  Recog. 15 1 7.7 1 7.7 
Table 2: The Gesture Matrix (a) and Focus Matrix (b) for 
processing the example in Figure 3.  Each cell in the Referring 
Expression Matching columns corresponds to an instantiation 
of the matching function. 

Referring Expression Match Status Potential 

Referent it these houses 

House 3 1 × 0.15 × 1 = 0.15 1 × 0.67 × 0.37 = 0.25* 
Gesture 1 

Town 2 1 × 0.15 × 0 = 0 1 × 0.67 × 0 = 0 

House 9 1 × 0.15 × 0.37 = 0.055 1 × 0.67 × 1 = 0.67* 
Gesture 2 

Town 2 1 × 0.15 × 0 = 0 1 × 0.67 × 0 = 0 

House 1 1 × 0.15 × 0.14 = 0.02 1 × 0.67 × 0.37 = 0.25* 
Gesture 3 

Town 2 1 × 0.15 × 0 = 0 1 × 0.67 × 0 = 0 

(a) Gesture Matrix 

Referring Expression Match Status Potential 

Referent it these houses 

Focus House 8 1 × 0.85 × 1= 0.85*  

(b) Focus Matrix 
author worked at the Intelligent Multimedia Interaction group. 

49



general cognitive and linguistic principles, it could potentially 
improve the robustness of interpretation.   

6. CONCLUSION  
We have described a greedy algorithm for efficient multimodal 
reference resolution that utilizes the linguistic and cognitive 
principles underlying human referring behavior. Our empirical 
studies indicate that this algorithm achieves comparable 
performance to the graph-matching algorithm for optimizing 
multimodal reference resolution.  In particular, this algorithm 
relies on the theories of Conversation Implicature and 
Givenness Hierarchy to effectively guide the system in the 
matching process. Given m referring expressions and n 
potential referents from various sources, this algorithm takes 
O(mn) to find a solution. This is a dramatic improvement from 
the graph-matching approach that cannot be executed in 
polynomial time. Because of its simplicity and generality, this 
approach has a potential to improve the robustness of 
interpretation as indicated in our empirical studies. We have 
learned from this investigation that prior knowledge from 
linguistic and cognitive studies can be very beneficial in 
designing efficient and practical algorithms for enabling 
intelligent user interfaces.  Our future work will combine the 
probabilistic reasoning with the prior linguistic and cognitive 
knowledge in one framework to address both adaptability and 
generality in input interpretation.  
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